Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.

نویسندگان

  • Voichita M Dadarlat
  • Carol Beth Post
چکیده

The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein hydration and unfolding--insights from experimental partial specific volumes and unfolded protein models.

BACKGROUND The partial specific volume of a protein is an experimental quantity containing information about solute-solvent interactions and protein hydration. We use a hydration-shell model to partition the partial specific volume into an intrinsic volume occupied by the protein and a change in the volume occupied by the solvent resulting from the solvent interactions with the protein. We seek...

متن کامل

Hydration and protein folding in water and in reverse micelles: compressibility and volume changes.

The partial specific volume and adiabatic compressibility of proteins reflect the hydration properties of the solvent-exposed protein surface, as well as changes in conformational states. Reverse micelles, or water-in-oil microemulsions, are protein-sized, optically-clear microassemblies in which hydration can be experimentally controlled. We explore, by densimetry and ultrasound velocimetry, t...

متن کامل

Molecular dynamics simulation of solvated protein at high pressure.

We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell contai...

متن کامل

Water coordination structures and the excess free energy of the liquid.

We assess the contribution of each coordination state to the hydration free energy of a distinguished water molecule, the solute water. We define a coordination sphere, the inner-shell, and separate the hydration free energy into packing, outer-shell, and local, solute-specific (chemical) contributions. The coordination state is defined by the number of solvent water molecules within the coordi...

متن کامل

An extended dynamical hydration shell around proteins.

The focus in protein folding has been very much on the protein backbone and sidechains. However, hydration waters make comparable contributions to the structure and energy of proteins. The coupling between fast hydration dynamics and protein dynamics is considered to play an important role in protein folding. Fundamental questions of protein hydration include, how far out into the solvent does ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 91 12  شماره 

صفحات  -

تاریخ انتشار 2006